Rhodium(III)-bis and -tris Hetero Allyl Complexes. Synthesis and Characterisation

D. H. M. W. THEWISSEN*, J. G. NOLTES

Institute of Applied Chemistry TNO, P.O. Box 5009, 3502 JA Utrecht, The Netherlands

J. WILLEMSE and J. W. DIESVELD

Department of Inorganic Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received September 19, 1981

Rh(III)-bis- and Rh(III)-tris hetero allyl complexes can be prepared via ligand substitution starting from RhCl₃·3H₂O and $[X-C(Z)-Y]^-$ or via oxidative addition starting from Rh(I)[X-C(Z)-Y] L₂ ($L=C_8$ H₁₄, PPh₃) and suitable $[X-C(Z)-Y]_2$ or $[X-C(Z)]_2$ Y reagents. For these Rh(III) complexes different geometrical and optical isomers exist. The facial and the meridional forms of Rh[Me₂NC(S)NPh]₃ can be separated by fractional crystallisation. At elevated temperature the mer isomer is completely and irreversibly converted to the fac one. Rotation about the exocyclic C-N bonds is observed even at -60 °C.

 $Rh[Ph_2PC(S)NR]_3$ (R=Ph, Me) predominantly exists in the met form. The ³¹P NMR spectrum of this isomer at +11 °C can be fitted for an ABXRh spectrum. The remarkable temperature dependence of the NMR parameters does not originate from interconversion of isomers but arises most probably from small changes in angles and bonding distances within the complex.

Introduction

Hetero allyls $[X-C(Z)-Y]^-$ usually coordinate to a transition metal complex through two of the three hetero atoms, thus forming a chelate ring [1-3]. In this paper we report the syntheses and spectroscopic properties of Rh(III)-tris hetero allyl complexes containing equal or different ligands. The chelating anions used as ligands are given in Fig. 1.

The electrochemical oxidations and reductions of two of these complexes, $Rh[Ph_2PC(S)NR]_3(R = Ph, Me)$ and $Rh[Me_2NC(S)NPh]_3$ [4] as well as the synthesis and characterisation of some $Cu[R_2NC(S)NR']$ complexes [5] have been reported recently by us.

Fig. 1. The chelating ligands used in this paper. i = P,Pdiphenyl-N-R-phosphinothioformamido (R = Ph,Me); *ii* N,Ndi-R-dithiocarbamato (R = Me,Et); *iii* = N,N-di-R-N'-phenyl-(thio)ureido (R = Me, R₂ = -(CH₂)₅-); *iv* = N,N-dimethylthiocarboxamido.

The thiocarboxamido ligand $[Me_2NCS]^{\ominus}$, a pseudo-vinilyc anion, has also been included in this study because of its relationship with hetero allylic derivatives [6]. The coordination of this ligand to rhodium has been recently investigated and established to take place in an η^2 mode by C and S [7–9]. The Rh(III)-tris-hetero-allylic complexes have been prepared by ligand substitution starting from Rh(III) complexes and $[X-C(Z)-Y]^{\ominus}$ or by oxidative addition starting from Rh(I) $[X-C(Z)-Y]L_2$ ($L = C_8H_{14}$, PPh₃) and suitable [7, 10] compounds A–B, consisting of two hetero allyls or a combination of a hetero allyl and a pseudo vinyl. The compounds A–B are shown in Fig. 2.

Several geometrical, optical and rotational isomers of the Rh(III)-tris-hetero-allylic complexes are possible. Some of these undergo isomerisation under suitable conditions. For one of the complexes, *i.e.* Rh[Me₂NC(S)NPh]₃, the isomerisation processes have been closely investigated by means of temperature dependent ¹H NMR measurements. For Rh-[Ph₂PC(S)NPh]₃ a remarkable temperature dependence of the ³¹P NMR spectrum was observed. The results of these studies are reported in the present paper.

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom all the correspondence should be addressed.

Fig. 2. The compounds A–B, used for oxidative additions. i = N,N,N',N'-tetraethylthiuram disulfide; ii = N,N,N',N'-tetra-methylthiuram monosulfide; iii = N,N,N',N'-tetramethyl-N''-phenyl-dithiobiuret.

Experimental

IR spectra were measured on a Perkin-Elmer 283 spectrophotometer ($400-200 \text{ cm}^{-1}$), in CsI pellets. ¹H and ³¹P {¹H} NMR spectra were recorded on a Bruker WH 90 spectrometer at 90 MHz and 36.44 MHz, respectively, and on a Varian SC 300 spectrometer at 300 MHz and 121 MHz, respectively, using the deuterated solvent as internal lock.

Elemental analyses were carried out at the element-analytical department of the Institute of Applied Chemistry TNO. Analytical data are given in Table I.

Reactions were carried out at room temperature in analytical grade solvents.

Starting material.

RhCl₃•3H₂O (reagent grade) was obtained from Drijfhout, Et₂NC(S)SSC(S)NEt₂ and Me₂NC(S)SC-(S)NMe₂ from Fluka. Me₂NC(S)NPhC(S)NMe₂ [11], Ph₂PC(S)NHR (R = Ph,Me) [12, 13], Rh[Ph₂PC(S)-NPh](PPh₃)₂ [2], Rh[Ph₂PC(N-*p*-tol)N-*p*-tol](PPh₃)₂and Rh[Ph₂PC(NPh)O](PPh₃)₂ [3] and [RhCl(C₈-H₁₄)₂]₂ [14] were prepared according to literature procedures. Me₂NC(S)NHPh and (CH₂)₅NC(S)NHPh were prepared by direct addition of Me₂NH and piperidine, respectively, to Ph-N=C=S in diethylether.

$Rh[Me_2NC(S)NPh]_3$ I

A suspension of 130 mg RhCl₃·3H₂O (0.5 mmol) and 260 mg Me₂NC(S)NHPh (1.6 mmol) in 30 ml methanol was stirred vigorously. After 30 minutes a small excess of Et₃N was added. The colour of the mixture changed slowly from red to orange-red. After three hours the mixture contained an orange precipitate, which was filtered, washed with methanol and n-pentane and dried *in vacuo* (Ia). The filtrate was concentrated and toluene was added. After filtration the solution was extracted with distilled water to remove further Et_3N ·HCl. The toluene layer was dried on MgSO₄. Finally, the toluene was evaporated and on addition of n-pentane Ib was obtained.

$Rh[(CH_2)_5NC(S)NPh]_3 II$

The initial red solution from 130 mgRhCl₃·3H₂O and 350 mg (CH₂)₅NC(S)NHPh in 30 ml ethanol changed slowly to red-orange upon addition of Et₃N. After three hours II was isolated and purified according to the procedure, followed for Ib. Separation of the geometrical isomers was not successful.

$Rh[Ph_2PC(S)NR]_3 III (R = Ph); IV (R = Me)$

0.3 mmol RhCl₃•3H₂O and 1.0 mmol Ph₂PC(S)-NHR were suspended in a mixture of 20 ml methanol and 20 ml toluene. Upon addition of Et₃N the colour changed to orange. After stirring for one hour and standing for one night, yellow crystals were formed. After filtration IIIb and IVb were washed with methanol and diethyl ether and dried *in vacuo*. On addition of n-pentane to both filtrates, mixtures of IIIa and IIIb, and of IVa and IVb, respectively, were obtained. Isolation of the geometrical isomers (IIIa and IVa) was not achieved.

$\begin{array}{l} \{Rh[X-C(Z)-Y]_{2}Cl\}_{2} \quad [X-C(Z)-Y]^{\ominus} = [Me_{2}NC-(S)NPh]^{\ominus}(V); \quad [CH_{2})_{5}NC(S)NPh]^{\ominus}(VI); \quad [Ph_{2}PC-(S)NPh]^{\ominus}(VII); \quad [Ph_{2}PC(S)NMe]^{\ominus}(VIII) \end{array}$

0.5 mmol RhCl₃·3H₂O and 1.0 mmol of the protonated ligand were suspended in a mixture of 20 ml methanol and 20 ml toluene. After 30 minutes an excess of Et₃N was added. The solution was allowed to react for two more hours. After evaporation of methanol, toluene was added, and the suspension was filtered. The precipitate was washed with methanol, toluene and diethyl ether. V–VIII were dried *in vacuo*. Concentration of the filtrates gave considerable amounts of the Rh[X–C(Z)–Y]₃ products.

$Rh[Ph_2PC(S)NPh]_2[Me_2NC(S)NPh] \cdot 0.8C_6H_6 IX$

VII was reacted with an equimolar quantity of $Me_2NC(S)NHPh$ in the presence of Et_3N in benzene. After two hours IX was precipitated with n-pentane, washed with diethyl ether and dried *in vacuo*.

$Rh[Me_2NC(S)NPh]_2[Me_2NC(S)S] \cdot 0.5C_6H_6 X$

V was reacted with NaSC(S)NMe₂ in benzene. After two hours X was isolated according to the method, described for IX.

$Rh[Ph_2PC(S)NPh][Et_2NC(S)S]_2 \cdot 0.3C_7H_8 XI$

0.3 mmol Rh [Ph₂PC(S)NPh] (PPh₃)₂ and 0.3 mmol Et₂NC(S)SSC(S)NEt₂ were dissolved in 30 ml oxygen-free toluene. The initial yellow colour changed to orange. After two hours the solution was diluted with n-hexane. Orange crystals were obtained.

$Rh[Ph_2PC(S)NPh][Me_2NC(S)S][Me_2NCS] \cdot 0.3C_7 - H_8 XII$

Synthesis from $Rh[Ph_2PC(S)NPh](PPh_3)_2$ and $Me_2NC(S)SC(S)NMe_2$ analogous to XI.

$Rh [Ph_2PC(S)NPh] [Me_2NC(S)NPh] [Me_2NCS] - 1.0C_6H_6 XIII$

Synthesis from $Rh[Ph_2PC(S)NPh](PPh_3)_2$ and $Me_2NC(S)NPhC(S)NMe_2$ analogous to XI. Reaction was carried out in benzene.

$Rh[Me_2NC(S)S] [Me_2NC(S)NPh] [Me_2NCS] \cdot 0.6-C_6H_6 XIV$

Rh[Me₂NC(S)NPh](C₈H₁₄)₂ was prepared in situ by addition of 0.50 mmol Me₂NC(S)NHPh to 0.25 mmol [RhCl(C₈H₁₄)₂]₂ in the presence of Et₃N in 30 ml benzene. Subsequently 0.50 mmol Me₂NC(S)-SC(S)NMe₂ were added. After dilution with n-hexane an orange precipitate was obtained.

Ir[Ph₂PC(S)NPh] ₃ XVI

0.3 mmol $(NH_4)_3$ IrCl₆·H₂O and 1.0 mmol Ph₂-PC(S)NHPh were suspended in a mixture of 20 ml methanol and 20 ml toluene. On addition of NEt₃ the colour changed to orange--yellow. After stirring for one hour and on standing for one night yellow crystals of the *fac* and the *mer* isomer were formed.

Reactions and Products

The Rh(III) tris-hetero-allyl complexes are prepared either by substitution or by oxidative addition. Figures 3 and 4 summarize both synthetic routes.

TABLE I. Analytical Data. (Calculated values in parentheses).

							-	
Code	Compound	Colour	% C	% H	% N	% Cl	% S	Yield
Ia	fac Rh[Me ₂ NC(S)NPh] ₃	orange-yellow	50.6	5.5	13.4			50%
			(50.6)	(5.2)	(13.1)			
Ib	mer $Rh[Me_2NC(S)NPh]_3$	orange-brown	50.7	5.2	12.8			20%
			(50.6)	(5.2)	(13.1)			
II	$Rh[(CH_2)_5NC(S)NPh]_3$	orange-yellow	56.8	6.0	11.2			80%
			(56.8)	(6.0)	(11.1)			
IIIb	mer Rh[Ph ₂ PC(S)NPh] ₃ ·C ₇ H ₈	yellow	66.3	4.7	3.6			75%
			(66.5)	(4.6)	(3.6)			
IVb	mer Rh[Ph2PC(S)NMe] 3	yellow	58.0	4.7	4.4			70%
			(57.5)	(4.5)	(4.8)			
v	$\{RhCl[Me_2NC(S)NPh]_2\}_2$	brown	42.9	4.8	10.8	7.4		15%
			(43.5)	(4.5)	(11.3)	(7.2)		
VI	$\{RhCl[(CH_2)_5NC(S)NPh]_2\}_2$	yellow-brown	49.0	5.2	9.8	6.0		15%
			(50.0)	(5.3)	(9.7)	(6.2)		
VII	$\{RhCl[Ph_2PC(S)NPh]_2\}_2$	brown	57.8	4.0	3.4	4.5		10%
			(58.6)	(3.9)	(3.6)	(4.6)		
VIII	${\rm RhCl[Ph_2PC(S)NMe]_2}_2$	orange-brown	51.4	4.1	4.4			10%
			(51.3)	(4.0)	(4.3)			
IX	$Rh[Ph_2PC(S)NPh]_2[Me_2NC(S)NPh] \cdot 0.8C_6H_6$	orange	62.1	4.7	5.5	a	9.2	40%
			(63.1)	(4.7)	(5.7)		(9.8)	
Х	$Rh[Me_2NC(S)NPh]_2[Me_2NC(S)S] \cdot 0.5C_6H_6$	orange-brown	46.5	5.4	11.3		20.2	40%
			(46.5)	(5.0)	(11.3)		(20.7)	
XI	$Rh[Ph_2PC(S)NPh][Et_2NC(S)S]_2 \cdot 0.3C_7H_8$	yellow	49.2	5.3	5.6			90%
			(50.1)	(5.0)	(5.6)			
XII	$Rh[Ph_2PC(S)NPh][Me_2NC(S)S][Me_2NCS] \cdot 0.3C_7H_8$	orange	48.3	4.6	6.5			90%
			(48.5)	(4.6)	(6.5)			
XIII	$Rh[Ph_2PC(S)NPh][Me_2NC(S)NPh][Me_2NCS] \cdot C_6H_6$	orange	57.7	5.3	7.2			90%
			(57.8)	(5.0)	(7.3)			
XIV	$Rh[Me_2NC(S)S][Me_2NC(S)NPh][Me_2NCS] \cdot 0.6C_6H_6$	orange-brown	41.1	5.3	10.6		23.6	60%
			(41.6)	(5.0)	(10.4)		(23.9)	
XV	$Rh[Me_2NC(S)NPh]_2[Me_2NCS]$	orange-brown	46.0	5.3	12.4		17.9	60%
			(45.9)	(5.1)	(12.8)		(17.5)	
XVI	Ir[Ph ₂ PC(S)NPh] ₃	yellow	59.0	3.9	3.4			65%
			(59.4)	(3.9)	(3.6)			

^a% P 6.1 (6.3).

Fig. 3. Synthesis of Rh(III) tris-hetero-allyl complexes from $Rh^{III}Cl_3 \cdot 3H_2O$ via substitution.

Fig. 4. Synthesis of Rh^{III} hetero allyl complexes via oxidative addition of A-B to $Rh^{I}[X-C(Z)-Y]L_{2}$ (L = $C_{8}H_{14}$, PPh₃) (see text).

The synthesis of the bis complexes {RhCl[X-C(Z)--Y]₂}₂ and the mixed tris complexes, according to Fig. 3, give only poor yields of the desired compounds, as a result of ligand scrambling. Moreover, it appears that in the substitution reactions generally a mixture of geometric isomers results. On the contrary most of the oxidative addition reactions starting from Rh(I)[X-C(Z)-Y]L₂ (L = C₈H₁₄, PPh₃) yield only one isomer. This suggests that metal-ligand bond formation and rearrangement of ligands in the complex proceed in a concerted fashion.

The two C_8H_{14} ligands are always easily displaced [15], whereas the second PPh₃ molecule can only be substituted if one of the hetero allyls possesses a PPh₂ group, implying that after oxidative addition the final complex still contains a coordinating phosphine ligand.

Results and Discussion

$Rh[Me_2NC(S)NPh]_3$

For Rh[Me₂NC(S)NPh]₃ two geometrical isomers exist, called facial and meridional, each having two optical isomers Λ and Δ . The Λ forms are shown in Fig. 5.

The *fac* isomer (orange) and the *mer* one (brown) can be separated by fractional crystallisation. The IR spectra of the two isomers show no significant differences (Table II).

Fig. 5. The two geometrical isomers of $Rh[Me_2NC(S)NPh]_3$ (Λ forms).

The ¹H NMR spectra in the methyl region (1-4 ppm), recorded at various temperatures are shown in Fig. 6. The parameters are given in Table III. A permutational analysis of all intramolecular rearrangements of $M(AB)_3$, as performed by Eaton [16] and the effect of fast C-N rotation (of the exocyclic C-NMe₂ group) is given in Tables IV and V, for the *fac* and the *mer* isomer, respectively.

For the *fac* isomer only one methyl signal is observed throughout the whole temperature range, which implies, that only the rearrangements of type A_1 , A_2 , A_5 and A_6 in combination with a fast CN rotation can be active. However, A_2 and A_5 seem to be highly improbable permutations, because the physical mechanism corresponding to A_2 is a simultaneous 180° rotation of the three chelate rings via an approximately hexagonal transition state and

Fig. 6. Methyl region of the ¹H NMR spectra of *fac* (left) and *mer* (right) Rh[Me₂NC(S)NPh]₃ at various temperatures.

TABLE	II. IR Absorptions. Spectra Measured in Csl Pellets.	Values in cm ¹ .							
Code	Compound	[Ph2 PC(S)NR] ^O	[R ₂ NC(S)S] ^Θ	[R2NC(S)NF	h] ⁰	[R2NCS] ⁰	/ c/	[X-C(Z)-Y] ^Θ	N-N-
		v(C=N)	⊭(C=N)	▶(NCN) _{as}	v(NCN)s	ν(C=N)	$\left(\begin{bmatrix} S \\ S \end{bmatrix} \right)^{u}$	v(C-S)	
Ia	fac Rh[Me2NC(S)NPh] 3			1534 vs	1105 s			927 m	352 w
Ð	mer Rh[Me2NC(S)NPh] 3			1537 s,br	1109 m			935 m	350 w 327 w
П	Rh[(CH ₂) ₅ NC(S)NPh] ₃			1530 vs	1110 m			933 w	352 w
qIII	mer Rh[Ph ₂ PC(S)NPh] ₃	1548 vs						928 s	330 br
ľvb	mer Rh[Ph_PC(S)NMe] 3	1576 vs						911 m	322 w–m
^	{RhCl[Me ₂ NC(S)NPh] ₂] ₂			1537 s	1106 m			927 m	340 w
١٨	{RhCl[(CH ₂) ₅ NC(S)NPh] ₂ } ₂			1523 vs,br	1108 m			937 w	340 w
					III 6711				W 070
ΛII	{RhCI[Ph ₂ PC(S)NPh] ₂] ₂	1562 vs						m 606	335 VW
IIIA	{RhCl[Ph ₂ PC(S)NMe] ₂ } ₂	1582 vs						914 m	337 w
X	Rh[Ph2PC(S)NPh]2[Me2NC(S)NPh]	1549 vs		1540 s,sh	1102 m 1109 m			930 m	333 w
×	Rh[Me ₂ NC(S)NPh] ₂ [Me ₂ NC(S)S]		1525 s,sh	1542 vs,br	1109 m			950 m	352 w–m
								908 m	
X	Rh[Ph ₂ PC(S)NPh] [Et ₂ NC(S)S] ₂	1548 s	1502 s					920 m	352 w–m
								911 m 902 m	319 wm
IIX	Rh[Ph2PC(S)NPh][Me2NC(S)S][Me2NCS]	1540 s	1511 s			1582 s	832 m	93 4 m	352 m
								918 m	311 w
XIII	Rh[Ph ₂ PC(S)NPh] [Me ₂ NC(S)NPh] [Me ₂ NCS]	1538 s		1532 s	110 4 m	1592 s	833 s	924 sh	334 w,br
								919 m	314 w,br
ΛIX	Rh[Me2NC(S)S][Me2NC(S)NPh][Me2NCS]		1518 s,sh	1532 vs;br 1540 vs,sh	1105 s,br	1588 s,br	838 m	920 m	360 w,br 330 w,br
хv	Rh[Me2NC(S)NPh]2[Me2NCS]			1540 vs,br	1107 s	1590 s	840 m	949 m 921 m	348 w
ΙΛХ	Ir[Ph ₂ PC(S)NPh] ₃	1550 vs						930 s	310 br

Rh(III) Hetero Allyl Complexes

Code	Compound	Solvent	Temp. (°C)	δ				Assignment ^b	Intensity ratio arom:alif
Ia	fac Rh[Me ₂ NC(S)NPh] ₃	C ₇ D ₈	29 	2.32 s 2.10 s	(br)			d	5:6
Ib	mer Rh[Me2NC(S)NPh] 3	C ₇ D ₈	29 -31 109	2.36 s 2.33 s 2.26 s 2.23 s 2.23 s 2.21 s 2.13 s 2.08 s 2.47 s 2.41 s 2.41 s 2.36 s	(3H) (3H) (3H)			c d a,b a,b c d a,b c d a,b c d a,b	15:18
II	Rh[(CH ₂) ₅ NC(S)NPh] ₃	CDCl ₃	25	2.33 s 2.87 m	(12H) (18H)			a,0	15:30
IVЪ	mer Rh[Ph2PC(S)NMe] 3	CDCI3	25	3.60 s 3.58 s 3.56 s 3.40 s 3.37 s 3.34 s 3.32 s 3.29 s 3.27 s 3.23 s 3.22 s 3.20 s 3.20 s 3.16 s	1 2 2 2 2 1 1 1 1 1 3 2	relative intensities			30:9
VI	${RhCl[(CH_2)_5NC(S)NPh]_2}_2$	CDCl ₃	25	3.12 m 1.40 m	(8H) (12H)				10:20
IX	$Rh[Ph_2PC(S)NPh]_2[Me_2NC(S)NPh]^a$	CDCl₃	25	2.59 s					35:6
XI	$Rh[Ph_2PC(S)NPh][Et_2NC(S)S]_2 \cdot 0.3C_7H_8$	CD ₂ Cl ₂	25	3.45 q 0.99 t 2.36 s	(4H) (6H) (1H)		-CH ₂ - -CH ₃ toluene		16:20

TABLE III. ¹H NMR Parameters (alifatic region). δ in ppm Relative to TMS. s = singlet; m = multiplet; t = triplet; q = quartet.

^aThis isomer \approx 70% of total intensity. ^bThe letters a,b,c and d refer to signals in Fig. 6.

because A_5 is only achieved by inversion. Permutation A_6 is achieved by a trigonal or Bailar twist mechanism, involving a trigonal prismatic intermediate. Such a twist movement is known to be operative in octahedral complexes. The distinction between A_1 or A_6 , that is rigidity or Bailar twist, cannot be made. Due to the non-diasterotopic nature of the substituents, the active operation(s) cannot be selected.

The *mer* isomer measured contained a slight impurity of the *fac* isomer. Apart from a low intensity methyl signal of this isomer, at room temperature three methyl signals of equal intensity are observed. This signal multiplicity is to be expected, when A_1 and A_5 are operative. As A_5 corresponds to the highly improbable inversion, the conclusion is that apart from a rapid rotation about the CN bond, at room temperature the complex is stereochemically rigid. On increasing the temperature two signals shift towards each other and thereupon exhibit linebroadening, indicating the start of an exchange process of type A_2 and/or A_6 . As mentioned above, A_2 is very improbable. By consequence an A_6 permutation, achieved by a Bailar twist, is then operative. The two methyl signals, predicted for the rapid exchange limit (2:1 intensity ratio) are, however, not obtained, probably because of the upper temperature limit, dictated by the solvent (toluene). Moreover, at 109 °C the *mer* isomer converts completely into the *fac* isomer, which is shown by the increasing

Operation	Averaging set	Net configurational change	Changes in signal multiplicity	Changes in signal multiplicity upon CN rotation
<u>—</u> ———————————————————————————————————		None	$2 \rightarrow 2^a$	$2 \rightarrow 1$
(12) (34) (56)	A ₂	None	$2 \rightarrow 2^{a}$	$2 \rightarrow 1$
(12) (34) (56)	A ₃	$Fac \longrightarrow Mer$	$2 \rightarrow 6^{b,d}$	$2 \longrightarrow 3^{c,d}$
(12) (34) (34) (56) (12) (56)	A ₄	Fac → Mer	$2 \rightarrow 6^{b,d}$	$2 \longrightarrow 3^{c,d}$
E*	A5	$\Delta \longrightarrow \Lambda$	$2 \rightarrow 2^{a}$	$2 \longrightarrow 1$
(12) (34) (56)*	A ₆	$\Delta \longrightarrow \Lambda$	$2 \longrightarrow 2^{a}$	$2 \rightarrow 1$
(12)* (34)* (56)*	A ₇	$\Delta \longrightarrow \Lambda$ Fac $\longrightarrow Mer$	$2 \rightarrow 6^{b,d}$	$2 \longrightarrow 3^{c,d}$
(12) (34)* (34) (56)* (12) (56)*	A ₈	$\Delta \longrightarrow \Lambda$ Fac $\longrightarrow Mer$	$2 \rightarrow 6^{b,d}$	$2 \longrightarrow 3c, d$

TABLE IV. Permutational Analysis for the CH₃ Signals of the ¹H NMR Spectra of Fac-Rh[Me₂NC(S)NPh]₃.

Intensity ratio: $a_{1:1}$; $b_{1:1:1:1:1}$; $c_{1:1:1}$. d The maximum number of signals is only obtained when the *fac* isomer is completely and irreversibly converted into the *mer* isomer.

Operation	Averaging set	Net configurational change	Net site interchange	Change in signal multiplicity	Changes in signal multiplicity upon CN rotation
E	A ₁	None	None	$6 \rightarrow 6^{a}$	$6 \rightarrow 3^{b}$
(12) (34) (56)	A ₂	None	(xy)	$6 \rightarrow 4^{c}$	$4 \longrightarrow 2^d$
(12) (34) (56)	A ₃	Mer \rightarrow 1/3 Fac + 2/3 Mer	(yz) (xz)	$6 \rightarrow 2^{e}$	2→1
(12) (34) (34) (56) (12) (56)	A4	Mer $\rightarrow 1/3$ Fac + 2/3 Mer	(xyz) (xzy)	$6 \rightarrow 2^e$	$2 \rightarrow 1$
E*	A ₅	$\Delta \longrightarrow \Lambda$	None	$6 \rightarrow 6^{a}$	$6 \rightarrow 3^{b}$
(12) (34) (56)*	A ₆	$\Delta \longrightarrow \Lambda$	(xy)	$6 \rightarrow 4^{c}$	$4 \rightarrow 2^d$
(12)* (34)* (56)*	A ₇	$\Delta \longrightarrow \Lambda$ Mer $\longrightarrow 1/3 Fac + 2/3 Mer$	(yx) (xz)	$6 \rightarrow 2^{e}$	$2 \rightarrow 1$
(12) (34)* (34) (56)* (12) (56)*	A ₈	$\Delta \longrightarrow \Lambda$ Mer $\longrightarrow 1/3 Fac + 2/3 Mer$	(xyz) (xzy)	$6 \rightarrow 2^e$	$2 \rightarrow 1$
Intensity ratio:	a1:1:1:1:1:1:	$b_{1:1:1:}$ $c_{2:2:1:1:}$ $d_{2:1:}$	^e 1:1.		

TABLE V. Permutational Analysis for the CH₃ Signals in the ¹H NMR Spectra of Mer-Rh[Me₂NC(S)NPh]₃.

intensity of the signals of the latter isomer at the expense of the former one. After heating a solution of *mer* Rh[Me₂NC(S)NPh]₃ for about one hour at 109 °C, the *mer* signals have completely vanished. This conversion is irreversible as can be seen after

cooling the solution to room temperature. A conversion of the *fac* isomer into the *mer* form is not observed.

The enantiomerisation in $Rh[R_2NC(S)S]_3$ has been found to possess a high activation energy [17].

The assumption of such a high energy barrier may well explain, why a fast Bailar twist (A_6) for the *mer* isomer occurs at high temperatures only.

Fac and mer $Rh[(CH_2)_5NC(S)NPh]_3$ could not be separated and unfortunately, cannot be distinguished by spectroscopic techniques.

$Rh[Ph_2PC(S)NR]_3 (R = Ph,Me)$

This compound also occurs in two geometrical isomers: facial and meridional (see Fig. 7).

Fig. 7. Fac and mer Rh[Ph₂PC(S)NR]₃ (R = Ph,Me). The Δ isomers are shown.

Mer-Rh[Ph₂PC(S)NR]₃ is the main product from the reaction of RhCl₃·3H₂O with [Ph₂PC(S)NR]^{Θ}. When rapidly precipitated the compounds always contain mixtures of the *fac* (±5%) and the *mer* (±95%) isomer. The values of ν (C=N) in the IR spectra of these compounds (see Table II) exclude N-coordination, so the ligand is coordinated by P and S.

The ³¹P [¹H] NMR spectra of mer-Rh [Ph₂PC(S)-NR]₃, recorded at 121 MHz in the temperature range of $-49 \degree C$ to $+104 \degree C$ are shown in Fig. 8. The values of the parameters are listed in Table VI. The note-worthy temperature dependence together with the multitude of δ and J parameters necessitates the application of a simulation program [18]. However, as $(\delta_{\mathbf{A}} - \delta_{\mathbf{B}})$ is relatively small, the value of ²J(A-B)_{trans} cannot be determined in all cases. From the spectrum measured at +11 °C a ²J(A-B)_{trans} value of 475 Hz is found and a correct simulation of the spectrum for an ABXRh pattern is achieved (see Fig. 9), which leads to values for ${}^{2}J(A-X)_{cis}$ and ²J(B-X)_{cis} of +22.5 Hz and -6.0 Hz, respectively. The variation of the contributions of metal s, p and d orbitals to ${}^{2}J(P-P)_{cis}$, arising from the slightly different P-M-P aperture angles [19] has been suggested as the cause for the striking difference between the values of the ${}^{2}J(P-P)_{cis}$ parameters which may even result in reversal of the sign [3]. Keeping the ${}^{2}J(A-B)_{trans}$ -value as found for the +11 $^{\circ}$ spectrum constant at all temperatures, the experimental and simulated spectra at other temperatures do not fully match. However, the data obtained from the simulations clearly reveal the following points:

- The δ_A and δ_B values diverge at increasing temperature, whereas isomerisation demands converga-

Fig. 8. Spectra of *mer* Rh[Ph₂PC(S)NPh]₃, recorded at various temperatures in C_7D_8 (+104, +82 and +46 °C) and CDCl₃ (other temperatures).

tion of these values, at least towards a coalescence temperature. Line-broadening is not observed at any of the temperatures measured, further denying the presence of species being in equilibrium.

 $-\delta_P$ and ¹J(Rh–P) values of all phosphino groups remain in the same range, confirming the preservation of the three chelates. The generation of any five coordinate species can therefore be excluded.

- No mer \Leftrightarrow fac isomerisation occurs, because a mixture of both isomers shows neither line-broadening, nor change in relative intensity ratios when measured at different temperatures. Intramolecular rearrangements with a net configurational change

$\mathbf{PO}_4 = +2.3 \text{ ppm. (Upfield = -); J in Hz.}$	
- δH	
TMP	lation
PO4. 8	calcu
% H ₃ I	order
e to 80	ia first
relative	ined v
t mqq	re obta
C). 6 in	exes al
) (25 °	compl
erature	other
Temp	or the
Room	Data f
led at	lation.
Record	r simul
ectra	mpute
ers. Sp	by co
aramet	tained
IMR P	are ob
ν{H1}	X IIIb
Л. ³¹ р	somple
BLE V	ta for c
A)al

Code	Comparind	Colvent	P1			$\mathbf{P_2}$			P_3		2,	21	2,
		THEATOR	δ1	¹ J _{Rh-P}	q	δ2	¹ J _{RhP}	q	6 ₃	¹ JRh-P	d d -	P2 JP1-P3	P ₂ -P ₃
IIIa IIIb	<i>fac</i> Rh[Ph ₂ PC(S)NPh] ₃ <i>mer</i> Rh[Ph ₂ PC(S)NPh] ₃	CDCl ₃ ^{b,e} CDCl ₃ ^{b,e}	-14.2 -27.6	87.2 77.7	S PPh ₂	-28.8	79.3	PPh ₂	-22.8	86.6	S 475	22.5	-6.0
IVa IVb	<i>fac</i> Rh[Ph ₂ PC(S)NMe] 3 <i>mer</i> Rh[Ph ₂ PC(S)NMe] 3	CDCI3 ^b CDCI3 ^b	-15.8 -30.2	87.6 78.5	S PPh ₂	-31.1	78.0	PPh ₂	-24.2	84.8	trans S 470	cis 22.2	cis -4.5
UII NII XI	{RhCl[Ph2PC(S)NPh]2} {RhCl[Ph2PC(S)NMe]2}2 Rh[Ph2PC(S)NPh]2[Me2NC(S)NPh] ^c	CDCI ₃ ^a CD ₂ CI ₂ ^a CDCI ₂ ^a	-17.2 -19.9 -17.3	98.9 99.0 87.9	S	-15.5	92.8	S			trans 3.7	cis	cis
XI XII XIII Ref.[8]	Rh[Ph2PC(S)NPh] [Et3NC(S)S]2 Rh[Ph2PC(S)NPh] [Me2NC(S)S] [Me2NCS] Rh[Ph2PC(S)NPh] [Me2NC(S)NPh] [Me2NCS] Rh[Ph3PC(S)NPh] [Me5NCS] CI(PPh3)	CD ₂ Cl ₂ CD ₂ Cl ₂ CD ₂ Cl ₂	-11.2 -13.2 -17.6 -28.8	94.6 93.4 94.0 73.0	S S PPh,	-19.8	101	PPh,			cis 518		
XVIa XVIIb XVIIb	fac Ir[Ph2PC(S)NPh] ₃ mer Ir[Ph2PC(S)NPh] ₃	cDCL ₃ ^b CDCL ₃ ^b	PPh ₂ -20.7 -25.4		5	PPh ₃ -25.4		•	-23.9		trans	15.0	15.0
^a Record	ed on a Bruker WH 90 snectrometer at 36 44 MHz	^b Recorded	on a Vari	ian SC 300	snectrom	eter at 121	MH ₂ ^c Th	e isomer.	the para	neters of w	hich are gi	ven. is about 7	0% of the

ę . 6 ż, -^eMeasured at +11 °C. total intensity. dGroup trans. 189

like the Bailar twist seem to be most improbable because of steric hindrance.

- The positions (syn or anti) of the Ph or Me substituents, attached to the exocyclic N atoms (to be discussed below) have no observable influence upon the shape of the NMR signals.

The difference between the spectra, recorded at various temperatures cannot be explained in terms of a chemical process or isomerisation. The temperature dependence of some of the NMR parameters is possibly caused by the occurrence of relatively small changes within the molecule (distances, angles). An unambiguous trend in the temperature effect of the parameters (except those for δ_A and δ_B) is not observed.

Attempts to gain more information concerning the ${}^{2}J(A-B)_{trans}$ values by studying the spectra of the analogous Ir-complex failed. The ${}^{31}P$ { ${}^{1}H$ } NMR spectrum of this complex likewise revealed the existence of a *fac* and a *mer* isomer, which do not undergo interconversion. However, the temperature dependent behaviour differs from that of the Rh-analogue.

The measured NMR parameters of Rh[Ph₂PC(S)-NR]₃ are in the range as reported before [2, 3]. Predominantly the *trans* atom influences δ and

Fig. 9. ${}^{31}P$ {¹H} NMR spectrum of *mer* Rh[Ph₂PC(S)NPh]₃ at 121 MHz. *a* Measured at 11 °C in CDCl₃; *b* Simulated for an ABXRh pattern (see text).

Fig. 10. Mer Rh[Ph₂PC(S)NMe]₃. Syn and anti positions of CH_3 group.

¹J(Rh–P) as observed earlier [2]. When sulfur is the *trans* atom, δ varies from 14.2 to 24.2 ppm and ¹J(Rh–P) from 84.8 to 87.2 Hz. In the case of a *trans* Ph₂P-group, δ varies from 27.6 to 31.1 ppm and ¹J(Rh–P) from 77.7 to 79.3 Hz. The large ²J(P_A–P_B)_{trans} coupling amounts to about 475 Hz.

The methyl groups in *mer* Rh [Ph₂PC(S)NMe]₃ can take *syn* or *anti* positions towards phosphorus. (See Fig. 10). When free rotation about the C–N bond is hindered, and there is no pronounced preference for one of the positions, the three different CH₃-groups give rise to eight conformational isomers, which would cause 24 lines in the ¹H NMR spectrum. However, two of the CH₃-groups will be nearly equivalent (a and b), which means a reduction to 14 lines. The actual NMR spectrum shows 13 lines. Even at 57 °C no line-broadening or change in signal multiplicity is observed. Therefore, free C–N rotation does not occur, confirming considerable π -electron density in the C–N bond.

$\{RhCl[X-C(Z)-Y]_2\}_2$

The dimeric species {RhCl]X-C(Z)-Y]₂}₂ show ligand adsorptions in the IR, comparable with those of the analogous tris complexes. ν (M-Cl) could not be assigned. In the ³¹P NMR spectrum of VII and VIII δ is about 20 ppm and ¹J(Rh-P) amounts to 99.0 Hz, for the principal isomer (±60%), for which the structures are not yet clear. Mol. weights could not be determined because of the insufficient solubilities.

Mixed tris-complexes

For the complexes X, XIV and XV only the IR spectra have been recorded (see Table II). Several isomers are present. No assignments have been made.

The ¹H NMR and the ³¹P NMR spectrum of IX indicate that also for this compound a number of geometrical isomers occurs. The principal isomer (about 70%) has δ_{Me} at 2.59 ppm (s) and $\delta(P_1)$ and $\delta(P_2)$ at about 17 ppm with ¹J(Rh-P₁) and ¹J(Rh-P₂) of nearly 90 Hz and ²J(P₁-P₂) of 3.7 Hz. We cannot discriminate between P₁ and P₂. The phosphino groups take *cis*- positions to each other and have sulfur as *trans* ligands. (See Fig. 11).

For the complexes XI, XII and XIII, each having one Ph₂P-group, only one geometrical isomer occurs. δ_P varies from 11.2 to 17.6 ppm and ¹J(Rh-P) from 93.4 to 94.6 Hz. In these complexes the atom *trans* to phosphorus is always sulfur. The ¹H NMR spectra of compounds XI-XIII provide information concerning rotation about the exocyclic C-N bond. Like in Rh[Me₂NC(S)NPh]₃ free rotation takes place for the ligand [Me₂NC(S)NPh]⁻, even at low temperature, but for the ligand [Me₂NC(S)S]⁻ only at circa 50 °C. The ligand [Me₂NCS]⁻ does not yet exhibit this behaviour at 50 °C. The ¹H NMR and the IR ($\nu_{C=N}$ is about 1590 cm⁻¹) point out, that the [Me₂NCS]⁻ entity is η^2 coordinated [10].

The probable structures of XI-XIII are given in Fig. 12.

Fig. 11. The structure of Rh[Ph₂PC(S)NPh]₂[Me₂NC(S)-NPh], IX.

Fig. 12. The structure of XI. Possible structures of XII and XIII.

The authors wish to thank Prof. Dr. Ir. J. J. Steggerda and Prof. Dr. C. W. Hilbers for stimulating discussions, Mrs. Ing. C. M. Bijlsma-Kreuger for measuring the IR spectra, and Drs. J. W. Marsman, Ir. P. W. Verwiel and Mr. A. Witteveen for recording the NMR spectra.

References

- 1 F. G. Moers, D. H. M. W. Thewissen and J. J. Steggerda, J. Inorg. Nucl. Chem., 39, 1321 (1977).
- 2 A. W. Gal, J. W. Gosselink and F. A. Vollenbroek, J. Organomet. Chem., 142, 357 (1977).
- 3 D. H. M. W. Thewissen, H. P. M. M. Ambrosius, H. L. M. van Gaal and J. J. Steggerda, J. Organomet. Chem., 192, 101 (1980).
- 4 D. H. M. W. Thewissen and J. G. M. van der Linden, Inorg. Chim. Acta, 52, 225 (1981).
- 5 J. Willemse, W. P. Bosman, J. H. Noordik and J. A. Cras, Recl. Trav. Chim. Pays-Bas, 100, 240 (1981).
- 6 D. H. M. W. Thewissen, Thesis Nijmegen (1980).
- 7 A. W. Gal, A. F. M. J. van der Ploeg, F. A. Vollenbroek and W. P. Bosman, J. Organomet. Chem., 96, 123 (1975).
- 8 W. P. Bosman and A. W. Gal, Cryst. Struct. Commun., 4, 465 (1975).
- 9 W. P. Bosman and A. W. Gal, Cryst. Struct. Commun., 5, 703 (1976).
- 10 A. W. Gal, J. W. Gosselink and F. A. Vollenroek, *Inorg. Chim. Acta*, 32, 235 (1979).
- 11 J. E. Oliver, S. C. Chang, R. T. Brown and A. Berkovec, J. Med. Chem., 14, 772 (1971).
- 12 K. Issleib and G. H. Harzfeld, Chem. Ber., 97, 3430 (1964).
- 13 K. Issleib and G. H. Harzfeld, Z. Anorg. Allg. Chem., 351, 18 (1967).
- 14 A. van der Ent and A. L. Onderdelinden, Inorg. Synth., 14, 94 (1973).
- 15 M. H. J. M. de Croon, H. L. M. van Gaal and A. van der Ent, Inorg. Nucl. Chem. Letters, 10, 1801 (1974).
- 16 S. S. Eaton and G. R. Eaton, J. Am. Chem. Soc., 95, 1825 (1973).
- 17 M. C. Palazzotto, D. J. Duffy, B. L. Edgar, L. Que Jr and L. H. Pignolet, J. Am. Chem. Soc., 95, 4537 (1973).
- 18 S. Castellano and A. A. Bothner-By, J. Chem. Phys., 41, 3863 (1964).
- 19 S. Otsuka, Proceedings IXth ICOMC, Dijon S14 (1979).